Lévy Flight

An ipython notebook version of this tutorial can be found here (for an online version see binder ).

Tutorial

Random walk distributions draw step sizes randomly from a given probability distribution function. The walk begins at a point and ‘steps’ to a new point in a random direction.

These types of distributions were invented by Benoît Mandelbrot. The Lévy flight distribution is a specific random walk distribution useful for creating fractal distribution which exhibits power law clustering.

2D vs 3D

In these example we will look only at Lévy flight distribution, first in 2D and then 3D. All other parameters are kept to their default values. We will explore what the other parameters do later.

2D

In this example we show how to generate a random walk distribution in 2D. Since the default setting is in 3D we will need to specify that we want this in 2D.

Before this we need to first import some basic modules for plotting and MiSTree itself.

import numpy as np
import matplotlib.pylab as plt
import mistree as mist

To generate a 2D Lévy flight sample, we will need to first specify how many points we want in our random walk. This is given below by a parameter we call size. Be careful with the size, if you make this too large, because of the periodic boundary conditions, this will result in a distribution that is no different to a random distribution!

size = 50000
x, y = mist.get_levy_flight(size, mode='2D')

This will give you a clustered distribution which looks like this:

plt.figure(figsize=(6., 6.))
plt.plot(x, y, 'o', markersize=1., alpha=0.1)
plt.xlabel(r'$X$')
plt.ylabel(r'$Y$')
plt.xlim(0., 75.)
plt.ylim(0., 75.)
plt.tight_layout()
plt.show()
_images/2D_example.png

3D

Creating a 3D distribution is even easier, since this is the default setting for all the random walk functions. Like before we again specify the size and generate the distribution in the following way:

size = 50000
x, y, z = mist.get_levy_flight(size)

We plot the 3 dimensions across 3 planes: X vs Y, X vs Z and Z vs Y:

import matplotlib.gridspec as gridspec

plt.figure(figsize=(10., 10.))
gs = gridspec.GridSpec(2, 2, hspace=0.05, wspace=0.05)
gs.update(left=0.075, right=0.975, top=0.975, bottom=0.075)
ax1 = plt.subplot(gs[2])
ax2 = plt.subplot(gs[3])
ax3 = plt.subplot(gs[0])
ax1.plot(x, y, 'o', markersize=1, alpha=0.1)
ax2.plot(z, y, 'o', markersize=1, alpha=0.1)
ax3.plot(x, z, 'o', markersize=1, alpha=0.1)
ax1.set_xlabel(r'$X$', fontsize=18)
ax1.set_ylabel(r'$Y$', fontsize=18)
ax2.set_xlabel(r'$Z$', fontsize=18)
ax3.set_ylabel(r'$Z$', fontsize=18)
ax2.set_yticks([])
ax3.set_xticks([])
ax1.set_xlim(0., 75.)
ax1.set_ylim(0., 75.)
ax2.set_xlim(0., 75.)
ax2.set_ylim(0., 75.)
ax3.set_xlim(0., 75.)
ax3.set_ylim(0., 75.)
plt.show()
_images/3D_example.png

Periodic boundary

All random walk distributions created by MiSTree have periodic boundary conditions by default. This means that the box is repeated infinitely in all dimensions. This is a common procedure used in N-Body simulations. When a particle steps out of the boundary it actually re-enters the box from the other side. The size of the box can be specified by setting the box_size in any of the Lévy flight functions.

size = 1000

# default box_size=75.
x, y, z = mist.get_levy_flight(size, box_size=75.)

# changing the box_size=100.
x, y, z = mist.get_levy_flight(size, box_size=100.)

However, if you want to turn this off you will need to set periodic=False.

size = 1000
x, y = mist.get_levy_flight(size, mode='2D', periodic=False)

Which we plot as:

plt.figure(figsize=(6., 6.))
plt.plot(x, y, 'o', markersize=1., alpha=0.5)
plt.xlabel(r'$X$')
plt.ylabel(r'$Y$')
plt.tight_layout()
plt.show()
_images/2D_example_no_periodic_boundary.png

Random Walk Models

Random walk distributions can be made by one of the Lévy flight functions: get_levy_flight or get_adjusted_levy_flight which creates a distribution of Lévy flight and adjusted Lévy flight distributions, respectively. Both of these functions interact with the function get_random_flight which can be used to generate a random walk with your own specified probability distribution function (PDF). Below we will explain in detail how these distributions work and what the parameters do in each model.

Lévy Flight

Lévy flights are defined with a power law PDF and a cumulative distribution function (CDF) given by,

\begin{equation*}
CDF(t) = \left\{ \begin{array}{lcl}
0  & \mbox{for} & t < t_{0} \\
1 - \left(\frac{t}{t_{0}}\right)^{-\alpha} & \mbox{for} & t\geq t_{0}
\end{array} \right.
\end{equation*}

Where:

  • t – step sizes

  • t_{0} – minimum step size.

  • \alpha – defines the slope of power law.

The PDF for the Lévy flight is given by,

\begin{equation*}
PDF(t) = \left\{ \begin{array}{lcl}
0  & \mbox{for} & t < t_{0} \\
\alpha \frac{t_{0}^{\alpha}}{t^{1+\alpha}} & \mbox{for} & t\geq t_{0}
\end{array} \right.
\end{equation*}

If we are to change t_{0}, which is the minimum step length, to shorter values this results in there being a higher probability of smaller step sizes.

_images/levy_flight_changing_t0.png

We now generate a set of realisations with these parameters.

size = 50000 # how many particles in the distribution

x1, y1 = mist.get_levy_flight(size, t_0=0.01, alpha=1.5, mode='2D')
x2, y2 = mist.get_levy_flight(size, t_0=0.1, alpha=1.5, mode='2D')
x3, y3 = mist.get_levy_flight(size, t_0=1., alpha=1.5, mode='2D')

which are plotted:

plt.figure(figsize=(15., 5.))
gs = gridspec.GridSpec(1, 3, hspace=0.025)
gs.update(left=0.05, right=0.95, top=0.925, bottom=0.125)
ax1 = plt.subplot(gs[0])
ax2 = plt.subplot(gs[1])
ax3 = plt.subplot(gs[2])
ax1.plot(x1, y1, 'o', markersize=1, alpha=0.1)
ax2.plot(x2, y2, 'o', markersize=1, alpha=0.1)
ax3.plot(x3, y3, 'o', markersize=1, alpha=0.1)
ax1.set_xlabel(r'$X$', fontsize=18)
ax1.set_ylabel(r'$Y$', fontsize=18)
ax2.set_xlabel(r'$X$', fontsize=18)
ax3.set_xlabel(r'$X$', fontsize=18)
ax2.set_yticks([])
ax3.set_yticks([])
ax1.set_xlim(0., 75.)
ax1.set_ylim(0., 75.)
ax2.set_xlim(0., 75.)
ax2.set_ylim(0., 75.)
ax3.set_xlim(0., 75.)
ax3.set_ylim(0., 75.)
ax1.set_title(r'$t_{0}=0.01$')
ax2.set_title(r'$t_{0}=0.1$')
ax3.set_title(r'$t_{0}=1.$')
plt.show()
_images/levy_flight_changing_t0_distribution.png

If we instead vary \alpha this changes the gradient of the slope.

_images/levy_flight_changing_alpha.png

We now generate a set of realisations with these parameters.

size = 50000 # how many particles in the distribution

x1, y1 = mist.get_levy_flight(size, t_0=0.1, alpha=1., mode='2D')
x2, y2 = mist.get_levy_flight(size, t_0=0.1, alpha=1.5, mode='2D')
x3, y3 = mist.get_levy_flight(size, t_0=0.1, alpha=2., mode='2D')

Which we then plot:

plt.figure(figsize=(15., 5.))
gs = gridspec.GridSpec(1, 3, hspace=0.025)
gs.update(left=0.05, right=0.95, top=0.925, bottom=0.125)
ax1 = plt.subplot(gs[0])
ax2 = plt.subplot(gs[1])
ax3 = plt.subplot(gs[2])
ax1.plot(x1, y1, 'o', markersize=1, alpha=0.1)
ax2.plot(x2, y2, 'o', markersize=1, alpha=0.1)
ax3.plot(x3, y3, 'o', markersize=1, alpha=0.1)
ax1.set_xlabel(r'$X$', fontsize=18)
ax1.set_ylabel(r'$Y$', fontsize=18)
ax2.set_xlabel(r'$X$', fontsize=18)
ax3.set_xlabel(r'$X$', fontsize=18)
ax2.set_yticks([])
ax3.set_yticks([])
ax1.set_xlim(0., 75.)
ax1.set_ylim(0., 75.)
ax2.set_xlim(0., 75.)
ax2.set_ylim(0., 75.)
ax3.set_xlim(0., 75.)
ax3.set_ylim(0., 75.)
ax1.set_title(r'$\alpha=1$')
ax2.set_title(r'$\alpha=1.5$')
ax3.set_title(r'$\alpha=2$')
plt.show()
_images/levy_flight_changing_alpha_distribution.png

These two parameters can both be changed to affect the amount of clustering. But since \alpha is directly related to the two point correlation function it is often considered to be the more important parameter.

Adjusted Lévy Flight

We developed a move flexible Lévy flight model to better deal with small scales. Normal Lévy flight distributions are able to produce power law 2PCF, however below t_{0} the 2PCF plateaus. To be able to control what happens below this scale we instead use a Lévy flight model which has a CDF:

\begin{equation*}
CDF(t) = \left\{ \begin{array}{lcl}
0  & \mbox{for} & t < t_{s} \\
\beta\left(\frac{t-t_{s}}{t_{0}-t_{s}}\right)^{\gamma}& \mbox{for} & t_{s} \leq t < t_{0}\\
(1-\beta)\left[1 - \left(\frac{t}{t_{0}}\right)^{-\alpha}\right]+\beta & \mbox{for} & t\geq t_{0}
\end{array} \right.
\end{equation*}

which we call the adjusted Levy flight, where t_{0} and \alpha play the same role as they do in the normal Lévy flight distribution. The CDF is built with two CDFs: (1) the normal Lévy flight part which operates for step sizes larger than t_{0} and (2) the adjusted part operates between step sizes t_{s} and t_{0} where t_{s} < t_{0}. Unlike the normal Lévy flight distribution, which transitions from a PDF(t<t_{0}) = 0 to a peak at PDF(t_{0}) the adjusted Lévy flight has a gradual rise in between t_{s} and t_{0}. The other parameters have the following roles:

  • t_{s} – the minimum step sizes.

  • \beta – the fraction of steps between t_{s} and t_{0}.

  • \gamma – the gradient of the rise.

The PDF is thus defined as:

\begin{equation*}
PDF(t) = \left\{ \begin{array}{lcl}
0  & \mbox{for} & t < t_{s} \\
\frac{\beta\gamma t}{(t-t_{s})}\left(\frac{t-t_{s}}{t_{0}-t_{s}}\right)^{\gamma}& \mbox{for} & t_{s} < t < t_{0}\\
\frac{\alpha(1-\beta)}{t_{0}}t^{-(1+\alpha)} & \mbox{for} & t\geq t_{0}
\end{array} \right.
\end{equation*}

Below we show what happens to the CDF of the adjusted Lévy flight distribution if we vary these parameters individually whilst keeping all other parameters constant.

_images/adjusted_levy_flight_cdf.png

Other Random Walk

To create a random walk distribution with a user defined steps, you will need to first generate a distribution of step sizes. To do this you will need to invert the CDF of a distribution and input random uniform values between 0 and 1. Once you have a distribution of step sizes you can pass this to the get_random_flight function.

We will step you through how to do this using a step size distribution which follows a log normal distribution.

CDF(t) = \frac{1}{2} + \frac{1}{2} {\rm erf} \left[\frac{\ln t -\mu}{\sqrt{2}\sigma}\right]

To generate a random log normal distribution we invert this function giving us:

t = \exp \left[\sqrt{2}\sigma\ {\rm erf}^{-1}(2u-1) + \mu\right]

Where CDF(t)=u. Here, u is a randomly drawn number between 0 and 1. We can generate this in the following way:

import numpy as np
import matplotlib.pylab as plt
from scipy.special import erfinv
import mistree as mist

size = 50000
u = np.random.random_sample(size)

mu = 0.1
sigma = 0.05
steps = np.exp(np.sqrt(2.)*sigma*erfinv(2.*u-1.)+mu)

x, y = mist.get_random_flight(steps, mode='2D', box_size=75., periodic=True)

plt.figure(figsize=(7., 7.))
plt.plot(x, y, 'o', markersize=1., alpha=0.25)
plt.xlabel(r'$X$', fontsize=18)
plt.ylabel(r'$Y$', fontsize=18)
plt.xlim(0., 75.)
plt.ylim(0., 75.)
plt.tight_layout()
plt.show()
_images/levy_log_normal.png

Functions

Indepth documentation on the functions to generate Lévy Flight-like simulations are provided below.

get_random_flight(steps[, mode='3D', box_size=75., periodic=True])

Generates a random realisation of a ‘Levy flight’-like distribution. The random step step sizes are defined by the user.

Parameters
  • steps (array) – Distribution of step sizes defines by the user.

  • mode (str) – ‘2D’ or ‘3D’ – Defines whether the distribution is defined in 2D or 3D cartesian coordinates.

  • box_size (float) – Length of the periodic box across one axis.

  • periodic (bool) – If True then this sets periodic boundary condition on the Lévy flight realisation. If False, the box_size parameter is ignored.

Returns

x, y, z (array) – Distribution of random walk particles. z is only outputted if this is a 3D distribution.

get_levy_flight(size[, periodic=True, box_size=75., t_0=0.2, alpha=1.5, mode='3D'])

Generates a random realisation of a Levy flight distribution.

Parameters
  • size (int) – Number of points.

  • mode (str) – ‘2D’ or ‘3D’ – Defines whether the distribution is defined in 2D or 3D cartesian coordinates.

  • box_size (float) – Length of the periodic box across one axis.

  • periodic (bool) – If True then this sets periodic boundary condition on the Lévy flight realisation. If False, the box_size parameter is ignored.

  • t_0 (float) – Levy flight parameter, minimum step size.

  • alpha (float) – Levy flight parameter, step size power law slope.

Returns

x, y, z (array) – Distribution of Levy flight particles. z is only outputted if this is a 3D distribution.

get_adjusted_levy_flight(size[, mode='3D', periodic=True, box_size=75., t_0=0.325, t_s=0.015, alpha=1.5, beta=0.45, gamma=1.3])

Generates a random realisation of an adjusted Levy flight (ALF) distribution.

Parameters
  • size (int) – Number of points.

  • mode (str) – ‘2D’ or ‘3D’ – Defines whether the distribution is defined in 2D or 3D cartesian coordinates.

  • box_size (float) – Length of the periodic box across one axis.

  • periodic (bool) – If True then this sets periodic boundary condition on the Lévy flight realisation. If False, the box_size parameter is ignored.

  • t_0 (float) – ALF parameter, minimum step size for Levy flight component.

  • alpha (float) – ALF parameter, step size power law slope.

  • t_s (float) – ALF parameter, minimum step size for adjusted component.

  • beta (float) – ALF parameter, fraction of steps below t_0.

  • gamma (float) – ALF parameter, the gradient for the slow rise of the ALF’s cumulative distribution function.

Returns

x, y, z (array) – Distribution of adjusted Levy flight particles. z is only outputted if this is a 3D distribution.